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Abstract An integral equation of the Fredholm type which appears in problems of physical 
interest-like the dielectric response of an inhomogeneous confined quasi-tridimensional electron 
gar;-is studied when the kemel c o n l n s  an infinite number of dyadic terms. In terms of a 
representation, this amounts to inverting an infinite matrix. The conditions for the existence of 
a bound inverse are established and an explicit non-recmive algorithm is developed which can 
be used in practical calculations to genente successive approximations which converge to the 
exact answer. 

1. Introduction and statement of the problem 

Several problems of physical interest take the form of an integral equation of the Fredholm 
type: 

where g is given and f is the unknown. For instance, in the standard theories of screening 
of an external potential V,, by an electron gas 111, g is the known VeXt, f is the unknown 
total potential V,,, = Vex, + v n d  and k is essentially the polarizability of the electron gas. 

Physical analysis usually leads to an expression fork as a sum of an infinite number of 
dyadic terms. This is often truncated so the number of dyadic terms is finite by virtue of 
some approximation which, in practice, is made without formal justification. This paper is 
concerned with the case in which the number of dyadic terms is infinite. 

The problem can be one-, two- or three-dimensional and we ignore the trivial situation 
of translational invariance, when k is a function of T - T’ and the problem can be simply 
solved by Fourier transform. Lack of translational invariance is encountered, for instance. 
in the onedimensional problems posed by the layered epitaxial heterostructures which are 
the subject of intense current research 121. An interesting example is the screening of 
an external potential by the electron gas confined in a quantum well. These systems are 
obtained by some form of controlled ‘modulation doping’ and detailed calculations show 
that the resulting electron gas can be very strongly inhomogeneous. It was the study of 
this problem which motivated the present work. However, the mathematical analysis to 
be presented here holds more generally, with r a one-, two- or three-dimensional position 
variable. 

With this proviso we study the integral equation (1) for the case of a one-dimensional 
position variable 2. Defining 
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the problem is to solve 

g(z) = /dz’K(z,z‘)f(z’) 

that is, to find M(z, z’) so that 

f(z) = 1 dz’M(z, z‘)g(z‘) 

for which we must have 

Now, the kernels we consider here are of the form 

The relevance of this for the above mentioned screening problem in particular and the 
relationship of the L, and S, to the one-electron eigenfunctions of the quantum well has 
been established elsewhere 141 in the random phase approximation [I]. 

A full discussion of this problem is of sufficient complexity to constitute a separate 
publication by itself [4] but a brief indication of the basic setup wil clarify the motivation 
for the mathematical analysis presented here. The electronic states are the product of 
free-electron plane waves in the ( x ,  y) plane and localized onedimensional wavefunctions 
#,,(z). The focus is on the latter, which are labelled by the discrete quantum number 
n. The spectrum also contains, in the higher-energy region, delocalized states, more or 
less distorted by the potential of the quantum well. To avoid formal complications with 
a continuous spectrum-which could also be formally handled but would simply add an 
inessential formal complication-we can choose confining infinite barriers at sufficiently 
large distances from the well edges and then all #” form a discrete spectrum. On performing 
the RPA analysis, one finds [4] a kernel k ( z ,  z‘) of the form 

k(z ,  z‘) = [ j dz” G(z, z’~))13,(27@~,(zf~)]p,, [@;(z‘)@dz’)] 
m.”’ 

where the Pn.. are polarizability terms the detailed structure of which is irrelevant at 
this stage, and C(z, z”) is, after 2D Fourier transform, the Green function of the Poisson 
equation relating the induced charge density to the induced potential. The single products 
&(Z’)@~,(Z‘) are short-range functions of z’ while the integral containing G(z, z”) is a long- 
range function of z reflecting the long-range nature of the Coulomb field. We denote these 
functions, respectively, as Sn,nt(z’) and &,(z), Now, the indices n, n’ run from 0 to 03, but 
they form denumerable sets. Therefore, we can redefine a different labelling n, n’ -+ p, so 
k(z, z’) is a sum of products L;(z)P,S,(z’). Thus we have a kernel of the form (6) where, 
in this particular case, k,, = P,S,,. However, the problem can be solved for arbitrary k,, 
and it is interesting to do so because there are other problems of physical interest where the 
mathematical problem is the same with k,,  non-diagonal. 
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The heart of the problem is that, in principle, the summation in (6) involves an infinite 
number of terms and even though truncation to a finite number could constitute a good 
physical approximation to a direct expression of k ,  the ensuing matrix inversion process, 
presently to be discussed, requires a proper mathematical analysis and a formal justification 
based on a proof of the existence of an inverse for the initial problem before truncation. 

For this we proceed in two steps. Firstly the problem is solved for a finite number of 
terms so that, in the summation of (6),  EL, U = 1,. , . , N. We do this with an algorithm 
which lends itself to the study of the limit N + CO. Then this limit is studied so one can 
establish the conditions for the existence of the inverse. We thus obtain both the formal 
justification and an algorithm for performing practical calculations for any desired finite N. 

2. Solotion for finite N 

Le us define LIS as the vector with components L,/S, and k as the matrix of elements 
kpu .  We then write in compact form 

We assume all the functions L,(z) and S,(z) are linearly independent, a property which 
holds in many situations of physical interest and, in particular, in the case of the dielectric 
response of the inhomogeneous electron gas 141. Then these functions form a basis in their 
N-dimensional space. Otherwise we can always form a basis by making a suitable selection 
of the functions L,(z) and S,(z). Now, our unknown is the matrix m which represents a 
kernel m(z, z') in the dual basis (L;(z) .  Sv(z ' ) ] ,  just as the matrix k of (6) represents the 
kernel k ( z ,  z') in the same basis. We define the matrix p of elements 

and then the first of equations (5), by (Z), (6) and (7), reads 

- L*(z) . k .  S(Z') + L*(z) . in . S(Z') - L'(z) . k .  p . m . S(Z') = 0. (9) 

Since the [L,, S,) form a basis, this yields a matrix equation from which we obtain the 
formal solution 

where I n  is the N x N unit matrix. The same result is obtained by starting from the second 
of equations (5). 

There are well known standard algorithms for matrix inversion. However, these do not 
lend themselves to the study of the limit N + CO, which is OUT ultimate goal, so we develop 
a different algorithm which suits this purpose. 

Consider any given matrix a-which in this case would be I N  - k . 6. Following a 
standard practice we can factorize it as the product 

a = P . T  (11) 

of a unitary matrix P and an upper triangular matrix T satisfying 

r, = o  (i z j ) .  (12) 
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Starting from 

multiplying by P:,, summing over i and using the unitary character of P, we obtain 

Furthermore, multiplying (13) by its complex conjugate and summing over i we also obtain 

All these equalities axe invariant under a transformation of the type 

Since every Trr is t,, exp(ic&), we can choose the 0; so all q j  are real and equal to their 
moduli: 

We denote by P and T the corresponding P and T matrices. Now, in (13), we separate out 
the term r = j and write 

The prime on the summation indicates that the sum is nil by definition when j = 1 and the 
second equality defines qij, Obviously, qil is just ail .  Now multiply (18) by a$ and sum 
over i. This yields 

Also, from the definition of qjj we obtain 

whence 
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Then, by using (14) in (21) and expressing every p h  as qrm/fmmr we obtain the recurrence 
relation 

q i ~  =ail  

from which follow 

This is not yet the final form in which we shall obtain P and T but these results will be 
used presently. 

It follows from the properties of P and T that 

N det la1 -- - det /TI = n tl, 
det IPI ) = I  

we note that det IPI is a number of modulus equal to unity which never vanishes and thus the 
mabix a is singular if at least one of the t,j vanishes. We shall prove that the necessary and 
sufficient condition for this to happen is that the j t h  column of a be a linear combination 
of the preceding ( j  - 1) columns. Indeed, let us assume that 

Then (14) yields 

Conversely, assume 

tjl = 0. 

Then from the upper triangular nature of T: 
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Using (14) again we have 

F J Femfndez-Velicia et a1 

whence, multiplying by p,j, summing over re and using the unitary character of P, we 
have 

where, by assumption, pj # 0. Thus, since the argument holds for all m = 1,2,. . , , N, 
every a,j is of the form (19) and the j t h  column of a is a linear combination of the preceding 
( j  - 1) columns. We assume this is not the case, since we assume that the column vectors 
of a are all linearly independent. 

The above argument is related to the identical vanishing, or not, of the rjj. Now, in 
physics, all these matrix elements are functions of some parameters and it may happen that 
some t j j  vanish for some particular values of these parameters. This is typically associated 
with some normal mode of the system. For instance, in the case of the dielectric response 
of the quasi two-dimensional electron gas, i.e. confined in the z direction, the parameters 
are the frequency o and the 2D wavevector Q. The equations of the form 

$ j ( m , Q ) = O  (31) 

then yield the dispersion relations w ( Q )  for the plasma modes of the confined quasi ?D 
electron gas. However, when studying the problem of screening of an external potential 
with given independent o and Q, these are not related by any normal mode relationship 
and (31) does not hold. After this clarification, we retum to the inversion of a, given by 

a-' = T-' . P' (32) 

which is reduced to the inversion of T. 

(23) for Q, P and T. From the a matrix, we define the vectors 
Before studying the inversion of a, we re-examine the solution obtained in  (22) and 

a(') =[al,,azF, ..., axs}  (33) 

and likewise for the vectors P(') and Q'") from the P and T matrices. In the N-dimensional 
space spanned by the basis formed by the vectors (33), assumed to be linearly independent, 
we define the scalar product and norm 

and likewise for the P(s) and Qc*). The above recurrence formulae can then be concisely 
cast as 

Q(1) = ~ ( 1 )  
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Since P is unitary, the vectors Pci' form an orthonormal basis while, by (18), the vectors Q"' 
form an orthogonal basis. Indeed it can be checked that (22) amounts to an orthogonalization 
procedure of the standard kind, and 

(Q") . Q ' J ) )  = t?,& ,I ' I '  (36) 

However, we stress that the a(i) are nor assumed, in general, to be orthogonal. Now define 
the vectors 

= - a ( l )  

where A(j- ' )  is the cofactor of u(j) in (37) and this holds only for j > 1. 
Then, for j z I 

(& . &) = 0 k = 1.2,. . . .  ( j  - I). (38) 

Now, for all s = 1,. . . .  j - 1, j , .  ... N ,  every Q("' is a linear combination of 
(a(l), U@), ... ,U($)). Thus, the space spanned by (Q('), Q"', . . . .  QU-") is the same as 
that spanned by {d) ,  a@), .... u(j-')] and due to the orthogonality of the Q(') vectors (36) 
we have, in particular, also for j > 1, 

(39) (Q"', Q"') = 0 

(Q(j) ,  a(k)) = 0 

k = 1,2,. ... ( j  - 1) 

whence, for j > 1; 

k = 1,2, , . . , ( j  - 1). (40) 

Thus, both uu) and QU) are orthogonal to all vectors of the space spanned by 
{d), ao), .... d - l ) ] .  From (38)  and (40) we can now obtain an important result 

First we note that by expanding the numerator of (37), through the elements of the last 
column, the vector uti) has the form 

and &U), given in (23), is also of the form 

Note that the form of (41) and (42) is not incompatible with (38) or (40) because the basis 
formed by the I$) is not orthogonal. Now consider the vector 

ti-I), 
Q ( j )  - &) = C (pj,.< - ~j , ,~)a ' .  (43) 

S=l 



398 

This is a vector in the space spanned by {a(]) ,  d2), .... & I ) ]  but at the same time, by 
(38) and (40), it is orthogonal to all the vectors of this basis. Therefore, this vector vanishes 
identically whence we have proved that 

F J Fedndez-Vel ic ia  et ai 

(4) QW = ,W, 

Thus, the 4;j. first obtained in the form of a recurrent relation, is given by (37) which is a 
constructive, non-recurrent formula giving the q;, directly from the a,,. 

Let us return to the determinant A(r)  defined in (37)-in this case r = j - 1. We shall 
denote this as A(’)[a]  to indicate that it is formed by scalar products of a vectors. Likewise, 
A(‘) [a]  will denote the same determinant formed by scalar vectors of another set [a], Let 
these be related to the vectors of the set {a] by a linear transformation of the form 

piJ = [ A u - l ) A j ] - ] / z  

such that the matrix of elements mi,,, (i, s = 1,2, .... r )  has a non-vanishing determinant 
U@). Then 

A(’)[,] = [o”’lzA‘”[a].  (46) 

Thus, if one of these determinants is non-vanishing then the other is also non-vanishing. 
Now consider, in particular, the linear relationship between the Q“’ and the a“) which 

results from using (44) and expanding the numerator of (37) through the elements of the 
last column. This is a linear transformation of the form (45) in which the matrix of w 
coefficients is a lower triangular matrix with all the diagonal elements equal to unity. Thus, 

A”)[&] = A ” ) [ a J .  (47) 

However, we have seen that the Q(i) vectors form an orthogonal set. Therefore 

. a(l)) (a(U .a”)’ , , , ( a O )  . , t i - U ) X  ail 
(&) . &))* (am . &)) , , , (&) . & I ) ) *  aiz 

... . . .  ... .,. ... (51) 

... .., ... . . .  ... 
(a”). aW)’ (a”’ . &))* , , , (& . a O - l ) ) *  

and this is always non-negative and real. Hence A(’), defined in (30). is real and non- 
negative. 

On the other hand, Q ( j )  is of the form (35) and has the property (33). Hence, by (30), 

and 
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for all i. j = I . .  ... N .  It follows also from (23) that 

whence the explicit formula 

We stress that the matrix elements p,j and t i j  are obtained here not from the usual type of 
recurrence relations but by the explicit formulae (51) and (53). In particular 

These results allow us to formulate an algorithm for the inversion of T with which we can 
eventually study the limit N + CO. 

3. The inversion o f t  and the limit N + cy) 

Let the subindex N denote a matrix of finite order N and consider, in particular, the upper 
triangular matrix T ( N ) .  This can again be factorized as the product 

T ( N )  = T(N) . d w )  (55) 

where d(N) is the diagonal malrix of elements 

( d ( N ) ) i j  = &j$j (56) 

and 

i f i >  j 
i f i = j  (1 Si i f i < j  

(i, j = 1,2. .... N ) .  
( r < N ) ) i j  = t i j  

For given N > 2, we introduce the N - 1 vectors bo) with components 

(57) 

and corresponding matrices 
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where the ( j  + I)th column consists of the j components of b(j) and ( N  - j) zeros, for 
j = 2, . . . , N - I .  

F J Fedndez-Velicia et a1 

Then 

(j) - 
s ( N ) - O . . . O  

so that (63) reads 

... . . .  ... 
0 . .  . o  s!" o...o 

I 
0 O...O 

o...o 0 o...o 
. . . . . . . . . 

Now, the case N = 2 is trivial and, for N = 3, (63) yields 
-1 - I (1) b(2) + b!l) ,bo) 

70) - (3) - b(3) - (3) 0) 0)' 

From (63) and (as), it is easy to prove by induction that 
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We are now ready to study the limit N + w. 

space ez, then it follows from the unitary character of P that 
First, we  note that if all the columns of the given infinite matrix a belong to the Hiibezt 

for j finite or infinite. This is a basic property and we shall assume throu out that this 
condition is satisfied. We now consider in rm the succession of elements {bLj j f ,  in general 
complex numbers. For each fixed value of j = 0.1,. . . these are the elements of a given 
parallel to the principal diagonal. We keep each j fixed when N + w and consider three 
cases. 

CuseI.  V j E { O , 1 , 2  ...) 

i? 

lim bN-j  ( N )  - = B j  e M. 
N - r W  

Case 2 .  3 j  E {O, I ,  2 . .  .) for which the limit of (70) does not exist but V j  E (0.1.2 
either (i) 

.) 

lim c w 01) 
N-CC 

or (ii) the succession ( lby l j l )  is oscillatory and bounded between linite values 

Case 3. 3 j  E {O, 1 , Z . .  .) for which either (i) 

lim Ibyljl = CO 
N - m  

or (ii) the succession {lbT?,I) is oscillatory and is not bounded between finite values. 
Consider case 1. From (68), we can cast (64) as a recursion formula 

( N - I - r )  (M 
j -1  

( N t  - - b ( N )  
’ ( N - j )  - 

j = O , 1 , 2  ,..., N - 1  

( N - j )  - C ’ ’ ( N - j )  b ( N - j )  
r=O 

N = I ,2 . .  .. ,00 

from which it is clear that if the limit of (70) exists and if it is .finite then 

lim s I V N _ ’ ~  uj c w 
N - m  

and defining 

60 = 1 Q=u,- ,  ( j = 1 , 2  *.. .  ) 

we cast the limit N + 00 of (73) as 

172) 

(73) 
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Now consider a complex variable z which can have arbitrarily small modulus. From 
(76) we obtain 

which, recalling (7.5). is 

I m 
C U , Z j + ‘  = - 1  + 
j d  1 + BjZj+’ 

If Pj = 0. V i  E (0, 1,2,. . .I. then the same holds for all uj and then T& exists and is 
bounded, as is T(-). Quite generally, we define the functions 

m 

g(z) = C U j Z j + ’  
j=O 

and note that, on account of (69), we have 

(79) 

Hence, f(z) is analytical, at least inside the circle D(0, 1) of unit radius centred at the origin 
z = 0. Two situations arise, depending on whether or not f ( z )  is analytical in the boundary 
F of fJ(0, I ) ,  that is the circumference IzI = 1. A different theorem can be proved for each 
of these situations. 

Theorem I.A. If the function f(z), defined by (79), is also analytical in F, then a necessary 
and sufficient condition for T(-) to have a bounded inverse T& is that 

f ( z 0 )  # 0 vzo E D(0, 1). (81) 

Proof. Assume that f(z0) vanishes for some zo E 2?(0,1). Then, as a consequence of 
the analyticity of f(z) in e(0, I), it follows from (78) and (79) that g(z) has a pole at 20. 
Therefore, the radius of convergence of the series defining g(z) is < 1 and limj-.m a j  = 03. 

This implies that the series 

diverge and then 7cm) does not have a bounded inverse. Thus, (81) is a necessary condition. 
Conversely, assume that (81) holds. Then, g(z) is also analytical in d(0, 1). including 

its boundary F. Therefore, the radius of convergence of the series defining g(z) is > 1, the 
two series of (82) converge and T ( ~ )  has a bounded inverse. Thus, (81) is also a sufficient 
condition. 0 
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A different situation arises if f(z) is analytical inside @(O, 1) but not in its boundary 
F. Let us write every z E F in the form z = exp(i6'). B = [O, 2x1. Then the series defining 
f ( z )  in 3 is a particular case of a Fourier series of the form 

which must correspond to some function of B in [O, Zn], which, in principle, can only be 
f(exp(i6')). The problem is that the c, may or may not satisfy the conditions for the series 
of (83) to be of class C' with respect to B and this is not always guaranteed. For instance, 
it is not when c. - n - p  with 1/2 < p < 1. In this case, the Fourier series of (83) is not 
guaranteed to converge locally to f(exp(i6')) for all B E [O, ZJC] and there may even exist 
a set of points in this interval for which the series diverges. The question arising is the 
following: given that 

2 ICnlZ < (84) 
n=-m 

in what type of subsets of 3 is it possible that series (83) does not converge pointwise to 

A first answer to this question can be stated as follows [5 ] :  if f (exp(i6')) is a square 
summable function in [0 ,2n ]  then its corresponding Fourier series converges pointwise to 
f almost everywhere. 

Therefore, in order to give a definitive answer to the question posed, we only need to 
show that if (84) holds then f (exp(i8)) is square summable. 

To this end, let L2([0,2n]) denote the set of all complex functions @(e) having a 
Lebesgue measure in [O, 2x1 for which the norm 

f(exp(iQ))? 

With the standard inner product, the @ functions constitute a Hilbert space in which the 
functions U,(@) = exp(in8) (n E 2) form an orthogonal basis which is maximal because 
the set of all trigonometric polynomials is dense in L2([0,  2x1). Under these conditions, the 
Riesz-Fischer theorem [6] proves that if (cn]  is a succession of complex numbers satisfying 
(84), then there exists a function @(e) E L2([0. 2 ~ 1 )  such that 

1 "  
c, = l @(e) exp(4n.G) d8 

which in our case can only be f (exp io). Then it follows from Parseval's and Plancherel's 
theorems that 

i.e. f has finite norm. Then series (83), that is 

converges pointwise to the function f(expi6') everywhere in [O, 2n I  except possibly in a 
set of zero measure. We can now prove the following theorem. 
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Theorem I . E .  Assume the function f ( z )  defined by (79) is analytical only in D(0, l), i.e. 
inside the domain fi(0, 1) but not in its boundary 3. Then the necessary and sufficient 
conditions of T ( ~ )  to have a bounded inverse TZ) are the following: 

(i) that f(z) # 0 Vz E W O ,  I ) ;  
(ii) that if a = exp(i0o) is a point of 3 where f (zo) = 0, then for a sufficiently small 

interval of valucs of B about BO, we have 

if(exp(iW1 < Ki@ - 801” (89) 

with K and p real positive constants and 0 <: p < 4. Moreover, the points of 3 satisfying 
these conditions must constitute at most a set of zero measure. 

Proof. Assume f ( z )  vanishes for some point of D(0,l) where it is, by assumption, 
analytical. Using the same type of argument as employed in theorem 1.A, we then find that 
U,, diverges for N -+ W. Then the series of (82) diverge and T(-) has no bounded inverse. 
Thus, (i) is necessary. Furthermore, assume that in (89) p > 4 and that the subset of 3 for 
which this holds does not have zero measure. Then the function 

does not have a finite norm, the series of (82) diverges and T ( ~ )  does not have a bounded 
inverse. Thus, (ii) is also necessary. 

Now assume that these conditions hold. Then the function g of (90) has finite norm, the 
series of (82) converges and T(-) has a bounded inverse. Thus, (i) and (ii) are sufficient. cl 

We now consider case 2, so that for all j the succession [by?j) has at least the property 
that all its elements are contained in a compact domain Q of the complex plane. Then there 
are two possibilites: 

with N > No which are different 
form a finite set PI@), that is to say, k E K where K EN is finite; and 

(i) that beyond a certain NO E N all elements 

(ii) that this set is infinite. 
In case (i), we  must study the different functions 

and verify wjhether or not the conditions of theorems 1.A and l.B hold. This decides the 
conditions for the existence of a bounded T& under these circumstances. 

In case (ii), since the complex numbers form a metric space with a Euclidean distance 
and i-2 is compact in this space, R is sequentially compact and also has the Bolzano- 
Weierstrass property. Therefore: 

(i) out of an infinite succession of elements, all contained in Q, we can always extract 
at least one infinite partial succession which converges to a limit in Q: and 

(ii) an infinite succession of different elements, all contained in Q, contains at least one 
accumulation point. 

Applied to the case under study, this implies that for each value of j for which the 
succession (br2 j )  does not converge, there are at least two accumulation points and at least 
two convergent infinite swcessions. In general, denoting by p,(r). r E R with R either 
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finite or denumerable infinite, for each different accumulation point there is at least one 
convergent subsuccession. Therefore, we must in this case study the functions 

m 
f , ( z )  = I + C p j ( r ) z j + '  (92) 

j=O 

and investigate whether or not the conditions of theorems l.A and 1.B hold, which will 
again establish the conditions for the existence of 7;). 

Finally, we consider case 3. Then there is no compact domain in the complex plane 
which contains all elements of the succession [by),} and the matrix qm) has no bounded 
inverse. 

4. Conclusion 

We have established the general conditions for the existence of a bounded inverse of a 
given infinite matrix. Cases 2 and 3 have been studied for the sake of formal completeness. 
In practice, case 1 is the usual situation in problems of physical interest. In particular, in 
the problem which motivated this research-the dielectric response of a confined electron 
gas-all pj vanish and the existence of T;) follows immediately. 

In summary, the algorithm presented here serves: (a) to study the limit N + 00; and (b) 
to provide a practical method of calculation to generate successive approximations which 
converge to T(:) as N + 00. In practice, the steps of the calculation are as follows. 

(i) Given the initial matrix a to be inverted, this is factorized as in  (1 1). For each finite 
N ,  the elements pi, and tij are given by (51), (53) and (54). 

(ii) The inversion of a is then reduced to the inversion of T. 
(iii) The matrix T is factorized as in  (55). The inverse of T is then d-' . T-'. 
(iv) Since d is diagonal, its inversion is immediate and the inverse of 7 is given by 

(v) Thus in a direct non-recurrent formula: 
(67). 

= d-' .T-' . pt. (93) 

(vi) Having proved the existence of a-', this process can be carried out for increasing 

Application of this formalism to a physical model of an inhomogeneous confined quasi- 
N up to the desired degree of accuracy. 

ZD electron gas is currently in progress in our laboratory. 
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